
1

The Friendly Beginners’ R Course
for busy people

written by Toby Marthews
at the BCI Research Centre, Panamá (www.stri.org)

This course is only 12 pages long and you work through it in your own time so it’s
probably the least painful introduction to R currently around. Make sure you have the
example files that accompany this text (“first.r”, “mystery.r”, “quadrats.r” and
“quadratdata”) otherwise many things won’t make sense. Start reading below the line of
stars and all should be self-explanatory including how to install R in the first place (if
necessary).

Toby, August 2005 (revised October 2006)

SO - you’ve decided you want to learn to use the R language and environment?
Well, hmmmmm ... would it perhaps be more accurate to say that either a) your boss/
supervisor/ advisor has told you that you have to and you have a very bad feeling about the
whole idea, b) you have some analysis to do and a friend has promised - against all your
common sense - that R is easy to use and can help you, c) you have tried reading statistics
or modelling books, have given up and are desperately hoping that R is a way around them
or d) you’ve just decided to increase your egg-head rating and impress people?

Whatever your reasons, I think learning to use R is a good idea - if only to be aware
of what a package like this can do. R does a lot of very clever things and can make your
life easier if you have to analyse data a lot. The egg-head bit is also a good point: since I
put it on my CV everyone believes I’m much cleverer than I really am.

Some comments for those who think R is just another statistics package: Well, R is
both a programming language and a means to do statistical analysis and this is partly why I
think it’s a step ahead of anything else around at the moment: by learning R you will
acquire programming skills (these skills are 70-80% of what people learn (or should learn)
in modelling courses) and the ability to do statistics on a computer. So, by learning both
together, you can gain two sets of skills for the price of one. DON’T BUY AN R
TEXTBOOK (at least before you finish this course): firstly because there is a 2300 page R
manual downloadable for free from the R website <www.R-project.org> and secondly
because R is not ‘new statistics’ but a way of doing the old statistics quicker so you can
and should use a STANDARD statistics textbook, just adding notes to it as required.

I’ve used R for only about a year which means I really don’t know the ins and outs
of it, but in the following few pages I should be able to give you a kick-start and that’ll be
enough for you to be able to write your own R scripts, use some R functions, draw some
nice graphs and generally get familiar with it. This guide is written for someone who’s

2

used a computer before but has NO PROGRAMMING EXPERIENCE (if you do have
some experience, you’ll know which sections to skip below).

I can’t say how long this text will take to work through (everybody’s different), but
there are only 6 challenges so hopefully not too long. Set yourself up with a computer, a
printout of this text, a strong coffee (or alternative stimulant) and go through the sections
one-by-one starting with

Installing R & Running an R Program

You need a bit of general knowledge of computers and how they work first. If you already
know about computer languages and workspace directories and have R installed on your
computer then go on to the next section.

Computer programs are always written in some kind of computer language.
Computer languages are either script ones (e.g. BASIC, JavaScript, R) or compiled ones
(e.g. FORTRAN, PASCAL, C++, Java) and whichever one a programmer is using, it all
has to be translated in to machine code (which is a stream of 1s and 0s) before the
computer can actually ‘execute’ or ‘run’ it (= do it). Here’s where the difference lies: with
script languages the computer goes through the program line-by-line and translates and
executes each before going on to the next line; with compiled languages the computer
translates the whole program in one go, saves the machine code as an ‘executable’ on disk
and then runs the executable directly.

Generally speaking, script languages are slow but more user-friendly (esp. error-
reporting) and compiled languages are much faster but have less straight-forward syntax.
So, if you write a program in R then it’ll run a lot slower than an equivalent program
written in C++ - and you should be aware of this - BUT a) the difference will only be
noticeable to you if you’re doing really lots of calculations, b) if you’ve never used a
computer language before then you’ll be pulling your hair out if you start with something
like C++, c) in the case of R there are all these extra features like graph-plotting and
statistical functions that can make your life a LOT easier (and FORTRAN, for example,
can’t do those without special add-ins) and d) if you learn how to program using a
language like R then you’ll find it really easy to pick up any other computer language
afterwards because all languages have similar structures (repeat loops, for loops, if
statements, etc.).

That’s all just to set the scene: let’s actually do something. Here’s how to install R
on your computer. I’ve done instructions here for WINDOWS and for LINUX (I don’t
know anything about Apple Macs although R is available for that too) that work at the time
of writing for my machine and therefore should work fine for you too:

3

INSTALLATION FOR WINDOWS:
1. Go to the R website <www.R-project.org>, click on Download/CRAN on the left

and choose a mirror site near you (any will do). Choose Windows and click on “base”,
download the Setup Program (it’ll have a name ending in “.exe” like “R-2.4.0-win32.exe”)
and save it on the Desktop. Double-click on this program to run the installation (make sure
you tick the options to get all the Help Pages and accept the default startup options). Yes to
a Start Menu folder, but NO to a desktop icon and NO to a Quick launch icon (see Step 3).
R is now on your computer (and you can delete the “.exe” file).

2. Create a workspace directory on the Desktop (or elsewhere if you prefer) for
using R (right-click on the Desktop background, choose New -> Folder and give it a name
like “rwork”) and copy “first.r” (accompanying this text) in to it. This directory is used by
R for storing variables and function definitions (in a file called “.RData”) so you have to
have one. Oh, and “A -> B” is my way of saying “go to menu A and select B from it”.
WATCH OUT: in a particularly annoying way, some windows systems automatically
rename email attachments called “xxx.r” as “xxx.r.txt” or “XXX.R.TXT” when you save
them and you need to keep renaming them back to “xxx.r”.

3. Open the “RGui” by going through the Start Menu (something like Start ->
Programs -> R -> R 2.4.0) - by the way “Gui” = “Graphical User Interface”. Use “Change
dir...” in the File menu to change directory to the one you created in Step 2. Now use
“Save Workspace...” in the File menu to create an “RData” file in the workspace directory
and please change the default save name of “.RData” to “start.RData”. Close R (click on
the red “X” in the top right and you don’t need to save the workspace). Now you’re back in
normal windows. Open the directory you created in Step 2 and create a shortcut to
“start.RData” (right-click on it and choose “Create shortcut”). Now rename that shortcut
“Start R” and move it to the Desktop. The point of all this was to make an icon on the
desktop that you can double-click on to start R (the one R would create at installation starts
up with the wrong workspace directory). If you want a Quick launch icon on the task bar
as well, use the mouse to drag “Start R” on to the task bar (normally just to the right of
where the “start” of the Start Menu is).

4. Now start up R (i.e. double-click on the “Start R” shortcut). Test R can run a
simple program: use “Source R Code...” in the File menu, find first.r in the workspace
directory and open it. R will run the program and you should get a welcome message (the
file first.r is just a text file, by the way, as you can see if you open it in WordPad).

5. Not quite finished yet: go to File -> Open script... and choose first.r. An R Editor
window should open up to allow you to change the program (I need to check you can do
this too). Find the “5” on line 6 and change it to a “10”. Save it by going File -> Save as...
and save it under the name “first2.r” (then close the editor window).

6. Now run first2.r in the same way as in Step 4. If you got 10 stars then you’re
doing well and you deserve them!

7. You can exit R by clicking on the red “X” or by typing “q()” (for now, you don’t
need to save the workspace image again).

4

INSTALLATION FOR LINUX:
1. Go to the R website <www.R-project.org>, click on Download/CRAN on the left

and choose a mirror site near you (any will do).
2. Choose Linux and find the right download file for your version of Linux (e.g.

.rpm) and then install it in the way your version of Linux expects (you should know what
way - probably either with a double-click or through something like YAST).

3. Create a workspace directory on the Desktop (or elsewhere if you prefer) for
using R and copy “first.r” (accompanying this text) in to it. This directory is used by R for
storing variables and function definitions (in a file called “.RData”) so you have to have
one.

4. Open a terminal, change directory in to your workspace directory using cd and
type “R” to go into the R language (the prompt will change to “>“).

5. Test R can run a simple program: type “source(“first.r”)”. R will run the program
and you should get a welcome message (the file first.r is just a text file, by the way, as you
can see if you open it in a text editor like GNUemacs, kate, gedit, ue, pico, vi, etc.).

6. Not quite finished yet: open first.r in a text editor (NOT using the terminal -
leave that open at the same time and do this in a different window) so that you can change
the program (I need to check you can do this too). Find the “5” on line 6 and change it to a
“10”. Save it under the name “first2.r” (then close the editor window).

7. Now run first2.r in the same way as in Step 5. If you got 10 stars then you’re
doing well and you deserve them!

8. You can exit R by typing “q()”. For now, you don’t need to save the workspace
image.

5

Two Windows: Console & Editor

With the heady feeling of success from having run your first R script, I’m sure you’ll be
wanting more, more, more! Well, just to get you used to what we’ve done up to now,
please could you open up the original first.r in to your editor again. See if you can manage
to do the following two things:

Q1. Can you make the FOR loop count down from 5 to 1 instead of up from 1 to 5?

Q2. Can you make it count up and then down (which is easiest to do using two
FOR loops one after the other)?

If you try those two questions (I know they’re tedious: you’ve got to learn to walk before
you can run) then you’ll have to get used to the way R programmers keep two windows
open at once: you edit the program in an “editor” window, then save it, flip to the
“console” window (aka. “terminal”) and run the program from there (Windows version
only: note the different “File” menus depending on which window is active). This is the
way programming is done in a lot of languages, by the way, and many people resize and
move the two windows so they are as large as possible without overlapping. Windows
users may get annoyed about the way you can’t get the editor window to ‘word wrap’ (at
least I can’t see how to) and choose to use WordPad for all editing (saving in text format
each time). Whichever editor you use, make sure it always tells you what line number
you’re on (excl. continuation lines) so that you can use R’s error reports (Windows users:
I’d recommend strongly using the text editor “TextPad” (www.textpad.com and you can
download an evaluation version to try out for free) which is very much nicer to use than
either NotePad, WordPad or R’s in-built text editor).

Please don’t skip Q1 and Q2: they’re there to force you to check that the editing-
saving-running process works OK on your version of R and you need this to be working
for what follows. If it doesn’t work then please re-check what you’ve done so far and/or
panic and call for help (try the FAQs about installation on <www.R-project.org>). A
“syntax error”, by the way, means there’s something wrong in the code you’re editing:
check for typos and unclosed brackets and things like that.

6

The R Manual

While you’re concentrating on first.r to answer those questions, please make sure you can
understand what every line does. I haven’t explained everything in my comments there (the
lines) because you need to get into the habit of using R’s very comprehensive manual
system. There are no annoying paperclips, funny dogs or wizards: just lots of information.
Here’s how to use it:

Imagine you can’t work out what the “cat” command does (yes, I know this one is
probably obvious, but bear with me ...): go to the Console window and type in “?cat”. The
manual ‘page’ for cat will then appear (in Windows it appears in a new window, in Linux
in the same window: you press “q” to go back to normal). These manual pages are written
in a pretty technical way (you’re going to get used to it, I’m afraid) BUT you generally
don’t have to read much of it: scroll down to the bottom and there are usually some helpful
examples and these are the most useful bit of the page to start with because you can copy
them in to the Console window to see what they do (in Windows mark the example you
want with the mouse, do CTRL+c to copy, click on the Console and do CTRL+v to paste;
in Linux mark it and do Edit -> Copy, then q, then Edit -> Paste). Sometimes these
examples try to be a bit too clever and it’s not clear how they work (like the two on ?cat, I
think, which produce “iteration = ...” and “{1}: a 100 b 200 ...”), but for many commands
the examples are very useful, e.g.

Q3 Copy and try out the “Discrete Distribution Plot” example at the end of the
“plot” manual page and the “setting row and column names” example from the “matrix”
manual page.

If there doesn’t appear to be a manual page for a particular command (e.g. try
typing “?for”), there is a search facility you can use: type “help.search(“for”)” and top of
the results list is “Control(base)” which is a page you can bring up by typing “?Control”
(note the capital “C”). Perhaps a more user-friendly way of searching for help is to
download the “R Reference Index” from the “Manuals” part of the R website (www.R-
project.org): this is in PDF format and you can search for words in it using CTRL+f.

These search facilities are also very useful for finding out how to do things on R,
e.g. a standard kind of statistics plot is a box plot, but at the moment you don’t know how
to do this in R and if you type “?box” you don’t get the right manual page. Typing
“help.search(“box”)” in to the Console Window, however, or searching for “box” in the
reference index will both lead you to the keyword “boxplot” which is the right one to use
(and both sources give you examples to try too).

7

Putting Commands Straight in to the Console Window

I hope you like these short, easily-digestible sections by the way: I’m trying only to tell
you what you need to know to use R. Just to make sure everyone is following, I’d better
give the answers to Q1, Q2 & Q3: for Q1 just change the “1:5” to “5:1”, for Q2 you have
two loops with the first going up (1:5) and the second going down (4:1 to avoid having 5
counted twice), for Q3 you should get a pretty graph (“rpois(100,lambda=5)” means 100
draws from a Poi(lambda=5) distribution - we’ll get to this sort of thing later) and a 2x3
matrix with 1,2,3 on the top row and 11,12,13 on the bottom row. All those who got these
answers get 10 stars (are you keeping track of your stars?).

Next, please click on the console window and type in “y=3” and ENTER. Now
type “y” and ENTER. Now type “y=y*20” and “y” again. Do you see what’s going on?
You can put commands in straight like this. Now type “cat("Free love starts at",y,"\n")”
and “for (i in -4:2) {“. The prompt has changed from “>“ to “+”, which means R has found
an incomplete command and you need to type more in, so type “cat(i,"\n")” followed by
“}”. You get the idea, I think. Type “ages=c(13,41,49,0,42,1,40,20)” followed by
“hist(ages)” to get a quick taster of R’s statistical side. Also, there is a “history” function
whereby you can press the up and down arrows to find, modify and re-use a previous
command: click back on the Console Window and press the up arrow a few times to get
the first “cat” command in this section, change “love” to “dental care” and press ENTER to
get “Free dental care starts at 60” which is, of course, what I meant to say really.

This facility of being able to try out any command directly is really powerful and
one of the main reasons for using a script language (you can’t do it so easily with compiled
languages). If you’re given a program containing lots of incomprehensible command lines
(as may very well happen in the next section...), you can try out the lines one-by-one by
copying them in to the Console Window and seeing what they do.

8

A Mystery Program

Time for another challenge. Have a look at the program mystery.r (accompanying this
text): your task is to work out what it does.

When trying to work out what a program does, the first thing to do is to run it (save
it in the workspace, start R, use source, etc.). The second thing to do is to open it in the
editor and see if you can figure out from the code and code-comments what it’s trying to
do. You’ll get another 15 stars if you can tell me:

Q4 What does the program mystery.r calculate and put in the NND column of its
printout at the end?

At this point many people might be saying “whoa – what?” because we’ve suddenly
jumped to something with sin, cos, abs, sqrt and pi in it (maths, I’m afraid), a couple of
control loops (the for (…) { … } bits) and arrays (the variables with something in [] after
them). Don’t panic (yet) – just find any commands you’re not familiar with, check the
manual pages to see what the keywords are supposed to do (e.g. type “?sqrt” and copy the
example at the end in to the Console Window to see what it does) and, if that doesn’t help,
copy the whole line you’re not sure about in to the Console Window to see if it works there
too (most will), alright?

Q5 By inserting “f=jpeg(file="plot1.jpg")” just before the plot command and
inserting “dev.off()” just after the abline commands, the plot should appear in the
workspace directory as a .jpg graphics file instead of being plotted on the screen. Type
“?jpeg” to find out how to export as a .bmp or .png file too. This is very useful because it
allows you to put plots into a Word document or something similar. Another 5 stars if you
manage this too.

So, how are you feeling about this gentle art of programming so far? Dead hard or
insultingly easy? Keep count of your stars and pat yourself on the back if you got this far.
Take off a star for every bit of help you got from someone else, by the way: I’m watching
you.

The answer to Q4 is at the end of this text, written backwards, but DON’T LOOK
NOW: work it out first!

Vectors

OK, I think you need a breather!
This is an easy section just to tell you more about “vector” data types, which are the

c(...) lists of numbers you’ve already met. Click on the Console Window and type
“b=10;c=11;d=12” (the semi-colon is just a way of putting more than one command on one
line). Now type “vec=c(3,b,b,8)” and “vec” and you can see that vec now holds a list (aka.
vector) of numbers. You can access the numbers directly too: type “vec[2]” and “vec[4]”

9

and “for (i in 1:4) {cat(vec[i],"\n")}” (nb. 3 different types of brackets and they have to be
in the right places).

Now type “vec2=c(1,2,3,4)” and “vec3=vec+vec2” and “vec3” and
“vec4=(vec*vec2)+6” and “vec4” and “vec5=c(rep(3,times=20))” and “vec5” and if you
can follow what’s going on with all that then you know pretty much all you need to know
about vectors.

Matrices

After vectors come matrices. Boringly, this is not the enslaving-the-human-race, world-
simulating, karate-kicking kind of matrix (the R people have not implemented that yet), but
a more traditional mathematical matrix, which is just a grid or array or numbers. Type
“mat=matrix(c(7,8,2,3,4,5,6,3,2,1,-2,-9),nrow=3,ncol=4)” and “mat”, which should give
you a matrix. Now type “mat2=matrix(c(7,8,2,3,4,5,6,3,2,1,-2,-9),nrow=3,ncol=4,
byrow=TRUE)” and “mat2” and “mat3=matrix(7,nrow=3,ncol=4)” and “mat3” and
“mat4=matrix(3:15,nrow=3,ncol=4)” and “mat4” and “mat2+mat3” and “mat4*2” and
phew, but I think we’ll stop there!

All these commands about vectors and matrices can be used in a proper program in
just the same way as they work in the Console Window. If you feel that hell would freeze
over before you voluntarily did anything with matrices then fair enough: we’ll have no
more of them here.

Plotting Data on a Graph

R has a lot of funky plotting functions and these are one of the main reasons for learning
how to use the thing SO here are a couple of examples. Try typing the following in to the
Console Window to get a basic plot:

years=c(2004,2005,2006,2007,2008)
rainfall=c(1500,1300,1800,1350,1950)
plot(x=years,y=rainfall)

Now that’s fine, but the plot comes out using the R defaults which may not be to
everyone’s taste and they also don’t correspond with the standard guidelines on figures that
most scientific journals insist on (e.g. see “Figures” on the Journal of Ecology page
<www.blackwellpublishing.com/submit.asp?ref=0022-0477>). If you look at the manual
pages ?plot and ?par you’ll find out how to change some of the formatting options and here
is an example of a different way of displaying the same data:

thisdata=data.frame(years,rainfall)
bestfit=lm(rainfall~years,data=thisdata)
plot(thisdata,main="Annual Rainfall",xlab="recorded

years",ylab="mm",bty="l",ylim=c(0,2000),pch=4,sub=paste("Best Fit line is y =
(",bestfit$coefficients[2],") x + (",bestfit$coefficients[1],")"))

lines(thisdata)
abline(bestfit,lty=2)

10

Lastly (for this section), some bright spark at the R office decided to write a nice graphics
demonstration for people like you and me and you should definitely have a look: type
“demo(graphics)” and keep pressing ENTER or RETURN to go through it.

Remember to look at all the manual pages of all these various plotting commands,
by the way, and try the examples: that’s the only way you can learn how to make all those
impressive plots.

Packages

For a lot of satisical analyses you have to get to know R’s system of ‘packages’. Type
“library()” in to a Console Window to find out what packages were installed on your
computer when you put in R. Now type “search()” to get a list of the packages from that
list that are already loaded in (installed packages are not necessarily loaded in, you see).

A package like “methods” is already installed and loaded in by default, but
“survival” is only installed so if you want to use it you have to load it in by typing
“library(survival)” or “require(survival)”. Try the command “date.mdy(sdate=15000)”
both before and after loading in survival (which should give you 25-JAN-2001) to see
what I mean.

If you want to use a package that isn't already installed, then, hmmmm To use
an R function that’s not in one of the installed packages you’d have to be doing something
pretty abstruse To be honest, if you’re reading a beginners’ course on R (which you are)
then you should have no cause whatsoever to be using uninstalled packages

OK, if you insist, then go to <www-r-project.org>, click CRAN on the left, choose
a mirror site near you and then click Packages on the left and start reading up on how to do
this (I’m not going through this in a beginners’ course!).

11

Quadrat-o-phenia

This is only supposed to be a beginners’ course and I think it’s long enough already so I’m
going to wrap it up here by giving you a final example program that demonstrates some R
features (vector arithmetic, reading in data from a textfile, a χ2 test, a bar plot, a function
definition and sampling from a Poisson distribution). Have a look at quadrats.r
(accompanying this text) and try to figure out how it works using the manual resources
I’ve been telling you about above (the program explains what it’s working out as it goes
along). Apart from running this program and pausing in admiration at the clear and concise
way I write code (or perhaps staring in disbelief at how much pain can be compressed in to
a single page of text ...), I’d like you to do something as a final challenge.

Q6 Dig out a different worked example of a χ2 test (you may have encountered one
before in a textbook or you could look at a webpage like
<www.mste.uiuc.edu/patel/chisquare/intro.html>). They should all follow exactly the same
calculations and I’d like you to modify the program quadrats.r so that it calculates
whatever problem you’ve dug out and gets the same answer as your book or website. A
big, fat 30 stars to you if you can do that!

Whilst trawling through quadrats.r you should have found examples of many unfamiliar
commands. This is deliberate and you may have noticed that I’ve been trying to slip in to
all these programs as many different useful commands as I could. This is because I want
you to keep the programs and use them.

You see, no-one ever really writes an R script straight off from scratch: most
programmers maintain a little ‘library of useful programs’ somewhere and when they have
to write a new one they start with an old program in this library and modify it until it can
do the job in hand. There’s nothing bad in this (C and FORTRAN pogrammers have even
published many standard routines - see “Numerical Recipes” on <www.nr.com> - and
maybe R will have something similar one day) and the idea of giving you these scripts is
that they will form the kernel of a similar library for you.

12

All Done and Dusted

That’s it! The end of the course.

For further information, the R website <www.R-project.org> has links to a lot of
different things on it including a newsletter, a mailing list for help and MANUALS IN
CHINESE, CROATIAN, FRENCH, GERMAN, HUNGARIAN, ITALIAN, JAPANESE,
SPANISH, POLISH AND PORTUGUESE (see Documentation/Other -> Contributed
Documentation on the website). If you’ve got a problem and you’ve tried all my
suggestions in this text then email this mailing list.

For each star you managed to earn during this course (max. 70), please now go out
and buy a seed or a plant and put it in your garden or somewhere around wherever you’re
living (native species only, of course). In this way the study of R can contribute to the
greening and beautifying of the world outside, which makes me happy because I work with
plants.

Any CONSTRUCTIVE AND NOT ABUSIVE comments you want to make about
this little course, you can send to <raspberry@webmail.co.za> if you really have to, BUT I
only read this about once every 6 months so please don’t expect answers to any questions.
The whole point of this course is that you work these things out yourself, I’m afraid!

Ciao,
Toby.

PS. Most R users (and most R manuals) say you should type “x <- 3” instead of “x=3” to
make x equal 3. There are reasons for this, but I find “x=3” much more straight-forward
(and certainly easier to explain to my boss when he looks at my code!) and they are both
equivalent anyway.

PPS. My three most common errors when writing R code, are
i) forgetting that “log(x)” means ln(x) not log10(x),
ii) forgetting to use “==“ in if statements (e.g. you have to type “if (x==3) { ...”

instead of “if (x=3) { ...”) and
iii) comparing with a negative number (e.g. “if (x<-3) { ...” doesn’t work - you

have to say “if (x<(-3)) { ...”).
Watch out for these.

PPPS. Almost forgot: the answer to Q4 is: “ecnatsid ruobhgien tseraen” rof sdnats “DNN”

